by Acad. Konstantin SKRYABIN, RAS "Bioinzheneria" (Bioengineering) Center; Acad. Igor TIKHONOVICH, RAS Institute of Agricultural Microbiology; Valery VARLAMOV, Dr. Sc. (Chem.), Enzymes Engineering Laboratory, RAS "Bioinzheneria" (Bioengineering) Center
Lately, in these last twenty years or so, research studies of chitin, a native polymer (second only to cellulose in occurrence) and of its derivative, chitosan, have given birth to a new science, chitinology. The miraculous properties of these two compounds have found many applications in farming, industries, medicine and even in cosmetics. Ecofriendly, both substances, have important spinoffs in ecology problem solving as well.
TWO CENTURIES OF RESEARCH
Chitin, a natural polysaccharide, was first discovered by Henri Braconnot of France in champignons back in 1811. Afterwards this biopolymer was also detected in the testae of crustaceans, in the cuticles of insects, in diatoms, sea sponges and elsewhere. As Charles Rouget of France demonstrated in 1859, chitin, if treated by caustic alkali, gives rise to its acidic water-soluble modification. Next, in 1886, Ernst Hoppe-Seyler, a German biochemist, when heating chitin in the presence of potassium hydroxide at 180 °C, obtained a substance well soluble in hydrochloric and acetic acids and named later chitosan. It and related biopolymers became an object of keen interest. Three Nobel prizewinners researched in this area: Emil Fischer of Germany (Nobel Prize, 1902, for experiments in sugar and purin groups); Paul
стр. 4
Karrer of Switzerland (Nobel Prize, 1937, for work on carotenoids, flavins and Vitamins A and B); Walter Haworth of Britain (Nobel Prize, 1937, for research of carbohydrates and Vitamin C). Among other things, in 1903 Fischer synthesized glucosamine (a polysaccharide produced by joint cartilage); in 1929 Karrer degraded chitin in the presence of chitinase enzymes; and in 1939 Haworth gave an absolute configuration for gluc ...
Читать далее