Studies of planets are an important integral part of fundamental space research. Their objectives also include understanding the laws of the formation and evolution of the Earth. Scientists also want to gain an insight into the conditions of the origin and propagation of life in the Solar system. They study the Moon as the source of resources, a forward base for studies of remote space, a base for monitoring the asteroids threat and for keeping check on the development of critical situations on our planet. Work on these problems calls for pooling the efforts of different countries (while being mindful of the interests and priorities of national science) and for a more effective organization of our own national program of planetary studies. This problem was discussed at a session of the RAS Presidium by Acad. E. Galimov, Director of the RAS Institute of Geochemistry and Analytical Chemistry in December 2003.
What were the conditions on the Earth during the first hundreds of millions of years of its history? What was the temperature, how the gas and water "shells" of the planet were formed, its primary crust and the oceans; and what was their composition? For answers to these questions scientists have to rely on data of what is known as comparative planetology. We have no data on terrestrial rock of more than 3.9 bn years of age, with the exception of some grains of zircon, although the age of the planet itself is more than 4.5 bn years. In the final analysis our understanding of the evolution and prognostication of the development of the biosphere can be promoted only on the basis of understanding the laws of the origin and peculiarities of the existence of the heavenly bodies of the Solar system.
One of the foremost areas of space studies is associated with the crucial problem of the origin of life. This involves using the achievements of molecular biology, of mathematical modelling with the help of supercomputers; the use of fine geochemical and isotope methods w ...
Read more