Monodispersion technology, its applications in instmment making, medicine, biotechnology, power engineering, electronics, space studies and other areas have been the subject discussed by two leading Russian experts in the field-Rector of the Moscow Institute of Power Engineering, Research Director of the Center of High Technologies, RAS Corresponding Member, Yevgeny Ametistov, and Director of the same Center, Alexander Dmitriev, Dr. Sc. (Tech.).
Although research in this field was launched some 20 years ago, the main achievements have been scored but recently. Having said that, what is this all about and why the results of these studies are in such high demand today?
This technology is based on the application of spherical particles (granules) from 10 to 1,000 mkm in size with dispersion of 0.1-1.0 percent; they are made of different materials: from water solutions and cryogenic liquids to molten metals. For their production a team of researchers, headed by Prof. Ye. Ametistov and Dr. A. Dmitriev, developed generators of monodispersion particles and sets of units with a capacity of 10 4 -10 6 granules/s which make it possible to form complex droplet structures. Deviations of the latter from sphericity are only 0.5 percent, their flux velocity 3- 70 m/s, operating temperatures range - 14-1,500 К. Droplets of this kind, which simply cannot be produced by any other known techniques, are now in high demand for research purposes.
If we apply one and the same electric charge to each of the newly formed spherical particles, they can be considered a kind of an analog of electrons, and their flux can be controlled the way it is done in a cathode-ray tube. And that means that it should be possible, by altering the excitation signal, to regulate the movement of droplets after disintegration: launching them in a steady flux, produce "packs or sections" with a desired number of particles in each of them, produce fluxes or jets of granules of two different sizes (what are call ...
Read more